Este es un blog en construcción espero que sea de gran ayuda para todos aquellos alumnos de la I.E San Juan Bautista de la Salle
lunes, 15 de marzo de 2010
OPERACIONES CON FRACCIONES
HISTORIA DE LA MATEMÁTICA
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Página del Compendio de cálculo por el método de completado y balanceado de Muhammad ibn Mūsā al-Khwārizmī (820 d.C.)La Historia de la Matemática es un área de estudio que abarca las investigaciones sobre los orígenes de los descubrimientos en matemáticas y, en menor grado, de los métodos matemáticos y la notación.[cita requerida]
Antes de la edad moderna y la dispersión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz sólo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son el Plimpton 322 (matemáticas en Babilonia c. 1900 a. C.), el papiro de Moscú (matemáticas en el Antiguo Egipto c. 1850 a. C.), el papiro de Rhind (Matemáticas en Egipto c. 1650 a. C.), y el Shulba Sutras (Matemáticas en la India c. 800 a. C.). Todos estos textos tratan sobre el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.[cita requerida]
Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.[1] Las matemáticas en el Islam, a su vez, desarrollaron y extendieron las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media.
Desde tiempos ancestrales hasta la Edad Media, las ráfagas de creatividad matemática fueron seguidas, con frecuencia, por siglos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, fueron creciendo exponencialmente hasta el día de hoy.
SISTEMAS DE NUMERACIÓN
Sistema de numeración unario
Diferentes representaciones del número 8 en unario.
El sistema de numeración unario es un sistema de numeración biyectivo de base 1. Es el sistema de numeración mas simple que existe para representar los números naturales. Para representar un número N, se elige un símbolo arbitrario, que será la única cifra que tenga dicho sistema de numeración, y se repetirá N veces. Por ejemplo, si tomamos el símbolo como cifra única, el número 6 se representará como . El sistema tradicional de contar con los dedos es un ejemplo de numeración unaria. El sistema unario es útil en procesos de conteo, como el marcador de un deporte, o contar el número de personas que entran en un lugar, o el número de votos que van saliendo en una elección, ya que no requiere ir enmendando los resultados previos, simplemente hay que seguir añadiendo símbolos para su posterior recuento.
Contenido[ocultar]
Ejemplos de este sistema
Ejemplos de este sistema Las marcas se suelen agrupar frecuentemente en grupos de cinco para que sea más legible y sencillo el recuento posterior. Cuando el símbolo utilizado es una raya (el más frecuente) es común atravesar la quinta línea sobre las cuatro previas para formar grupos. En los sistemas de numeración chino, japonés y coreano se agrupan los símbolos se van añadiendo hasta que el quinto cierra el grupo y forma un símbolo que significa cinco.
Otro método utilizado en Brasil y también en Francia es ir dibujando las líneas formando los lados de un cuadrado. Uno se representa con una línea vertical, el dos formaría con ésta una L, el tres formaría una U junto a ellos, el cuatro cerraría el cuadrado y el cinco se añadiría en una de las diagonales del mismo.
Existen multitud de sistemas de numeración antiguos que, sin ser unarios, provienen claramente de sistemas de este tipo:
Los tres primeros números del sistema de numeración romano (hasta el cuatro en los relojes) se basan en el sistema de numeración unario.
El sistema de numeración egipcio utiliza el sistema unario para números del uno al diez, después utiliza un número para el diez, que repite como si fuera un sistema unario para los números del diez al noventa. Así sucesivamente, tiene símbolos para 1, 10, 100, 1000, 10.000, 100.000 y hasta 1.000.000 que repite y conjunta para formar números.
La numeración babilónica utiliza la agrupación de una cifra que representa al uno para todos los números de uno al diez. Tiene otro símbolo que representa al diez que repite y agrupa para formar las decenas hasta el 50, ya que es un sistema sexagesimal
Así, en todos estos sistemas de numeración posicionales se comenzó con sistemas basados en el unario para, posteriormente, ir haciendo cifras para números mayores (frecuentemente las potencias de diez) con objeto de simplificar la lectura de los número.
Para ver un ejemplo real de numeración unaria por civilizaciones véase el Papiro matemático de Moscú, datado del año 1880 a.C.